Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Open Vet J ; 14(1): 350-359, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633177

RESUMEN

Background: Equine influenza (EI) is a transmissible viral respiratory sickness of the Equidae family. Two viruses, H7N7 and H3N8 caused EI; however, H7N7 has not been detected for decades. H3N8 has circulated and bifurcated into Eurasian and American lineages. The latter subsequently diversified into Kentucky, South America, and Florida sub-lineages. Florida clade 1 (FC1) and Florida clade 2 (FC2) strains are the only circulating EI viruses (EIVs) in the meantime. Immunization is considered the major means for the prevention and control of EI infection. Using disparate technologies and platforms, several vaccines have been developed and commercialized. According to the recommendations of the World Organization for Animal Health (WOAH), all commercial vaccines shall comprise representatives of both FC1 and FC2 strains. Unfortunately, most of the commercially available vaccines were not updated to incorporate a representative of FC2 strains. Aim: The purpose of this research was to develop a new EI vaccine candidate that incorporates the hemagglutinin (HA) antigen from the currently circulating FC2. Methods: In this study, we report the expression of the full-length recombinant HA gene of FC2 in the baculovirus expression system. Results: The HA recombinant protein has been proven to maintain its biological characteristics by hemadsorption (HAD) and hemagglutination tests. Moreover, using a reference-specific serum, the specificity of the HA has been confirmed through the implementation of immunoperoxidase and western immunoblotting assays. Conclusion: In conclusion, we report the expression of specific biologically active recombinant HA of FC2, which would act as a foundation for the generation of an updated EI subunit or virus vector vaccine candidates.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Vacunas , Caballos , Animales , Hemaglutininas , Subtipo H3N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Baculoviridae
2.
Zoonoses Public Health ; 71(3): 314-323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362732

RESUMEN

AIMS: Outbreaks of avian influenza in poultry farms are currently increasing in frequency, with devastating consequences for animal welfare, farmers and supply chains. Some studies have documented the direct spread of the avian influenza virus between farms. Prevention of spread between farms relies on biosecurity surveillance and control measures. However, the evolution of an outbreak on a farm might vary depending on the virus strain and poultry species involved; this would have important implications for surveillance systems, epidemiological investigations and control measures. METHODS AND RESULTS: In this study, we utilized existing parameter estimates from the literature to evaluate the predicted course of an epidemic in a standard poultry flock with 10,000 birds. We used a stochastic SEIR simulation model to simulate outbreaks in different species and with different virus subtypes. The simulations predicted large differences in the duration and severity of outbreaks, depending on the virus subtypes. For both turkeys and chickens, outbreaks with HPAI were of shorter duration than outbreaks with LPAI. In outbreaks involving the infection of chickens with different virus subtypes, the shortest epidemic involved H7N7 and HPAIV H5N1 (median duration of 9 and 17 days, respectively) and the longest involved H5N2 (median duration of 68 days). The most severe outbreaks (number of chickens infected) were predicted for H5N1, H7N1 and H7N3 virus subtypes, and the least severe for H5N2 and H7N7, in which outbreaks for the latter subtype were predicted to develop most slowly. CONCLUSIONS: These simulation results suggest that surveillance of certain subtypes of avian influenza virus, in chicken flocks in particular, needs to be sensitive and timely if infection is to be detected with sufficient time to implement control measures. The variability in the predictions highlights that avian influenza outbreaks are different in severity, speed and duration, so surveillance and disease response need to be nuanced and fit the specific context of poultry species and virus subtypes.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Subtipo H7N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Subtipo H7N3 del Virus de la Influenza A , Pollos , Brotes de Enfermedades/veterinaria , Enfermedades de las Aves de Corral/epidemiología
3.
PLoS Pathog ; 20(2): e1011942, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408092

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Humanos , Pollos , Patos , Virus de la Influenza A/genética , Animales Salvajes , Aves de Corral
4.
Vet Res ; 55(1): 5, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173025

RESUMEN

Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Pollos/metabolismo , Virulencia , Proteínas Virales/metabolismo , Virus de la Influenza A/metabolismo , Factores de Virulencia/genética , Mamíferos
5.
Microb Biotechnol ; 17(1): e14389, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227348

RESUMEN

Pandemic preparedness starts with an early warning system of viruses with a pandemic potential. Based on information collected in a multitude of surveys, hazard models were developed identifying influenza viruses presenting a pandemic threat. Scores are attributed for 10 viral traits by expert panels which identified avian influenza viruses (AIV) belonging to subtypes H7N9 and H5N1 as representing the greatest pandemic risk. In 2013, more than 100 human cases infected with AIV H7N9 were observed in China. Case fatality rate (CFR) was high (27%), but the human-to-human transmission rate was low and by serological evidence H7N9 did not spread widely. Nevertheless, until 2019 more than 1500 H7N9 patients were identified characterized by a high CFR of 39%. Serology demonstrated that mild infections with H7N9 were widespread. In 2003, more than 400 people experienced AIV H7N7 cross-infection causing mainly conjunctivitis during a large poultry epidemic in The Netherlands. Between 1996 and 2019, a total of 881 human infections with avian H5N1 viruses were documented showing a CFR of 52%. Outbreaks were centred on South East Asia and showed close associations with epizootics in poultry. Mutations predisposing to human cross-infections were identified in the haemagglutinin (HA) and the RNA polymerase subunit PB2 of human H7N9 isolates. Human H5N1 isolates showed mutations in the receptor binding domain of HA and transmission in mammals could be obtained by as few as four additional aa changes introduced experimentally. Researchers have defined viral point mutations in HA, PB2 and the nucleoprotein NP that allowed AIV to cross the species barrier to mammals with respect to receptor recognition, RNA replication and escape from innate immunity respectively. Based on this insight a sequence-based early warning system for AIV preadapted to human transmission could be envisioned. Mink farms and live poultry markets are prime targets for such sequencing efforts.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Preparación para una Pandemia , Modelos de Riesgos Proporcionales , Mamíferos
6.
J Virol ; 97(10): e0107623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37811996

RESUMEN

IMPORTANCE: The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Empaquetamiento del Genoma Viral , Ensamble de Virus , Genoma Viral , Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/genética , ARN Viral/genética , Virión/genética
7.
Emerg Microbes Infect ; 12(2): e2252510, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37622753

RESUMEN

Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Bangladesh/epidemiología , Aves , Patos , Aves de Corral , Genotipo , Filogenia
8.
Nucleic Acids Res ; 51(12): 6479-6494, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224537

RESUMEN

A fundamental step in the influenza A virus (IAV) replication cycle is the coordinated packaging of eight distinct genomic RNA segments (i.e. vRNAs) into a viral particle. Although this process is thought to be controlled by specific vRNA-vRNA interactions between the genome segments, few functional interactions have been validated. Recently, a large number of potentially functional vRNA-vRNA interactions have been detected in purified virions using the RNA interactome capture method SPLASH. However, their functional significance in coordinated genome packaging remains largely unclear. Here, we show by systematic mutational analysis that mutant A/SC35M (H7N7) viruses lacking several prominent SPLASH-identified vRNA-vRNA interactions involving the HA segment package the eight genome segments as efficiently as the wild-type virus. We therefore propose that the vRNA-vRNA interactions identified by SPLASH in IAV particles are not necessarily critical for the genome packaging process, leaving the underlying molecular mechanism elusive.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Empaquetamiento del Genoma Viral , Humanos , Genoma Viral , Subtipo H7N7 del Virus de la Influenza A/fisiología , Gripe Humana/virología , ARN Viral/metabolismo , Ensamble de Virus
9.
Viruses ; 15(2)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36851517

RESUMEN

Influenza A viruses are rarely symptomatic in wild birds, while representing a higher threat to poultry and mammals, where they can cause a variety of symptoms, including death. H5 and H7 subtypes of influenza viruses are of particular interest because of their pathogenic potential and reported capacity to spread from poultry to mammals, including humans. The identification of molecular fingerprints for pathogenicity can help surveillance and early warning systems, which are crucial to prevention and protection from such potentially pandemic agents. In the past decade, comparative analysis of the surface features of hemagglutinin, the main protein antigen in influenza viruses, identified electrostatic fingerprints in the evolution and spreading of H5 and H9 subtypes. Electrostatic variation among viruses from avian or mammalian hosts was also associated with host jump. Recent findings of fingerprints associated with low and highly pathogenic H5N1 viruses, obtained by means of comparative electrostatics and normal modes analysis, prompted us to check whether such fingerprints can also be found in the H7 subtype. Indeed, evidence presented in this work showed that also in H7N7, hemagglutinin proteins from low and highly pathogenic strains present differences in surface electrostatics, while no meaningful variation was found in normal modes.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Hemaglutininas , Electricidad Estática , Mamíferos
10.
Virol J ; 19(1): 185, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371185

RESUMEN

BACKGROUND: Equine influenza is an important cause of respiratory disease in equids. The causative virus; EIV, is highly variable and can evolve by accumulation of mutations, particularly in the haemagglutinin (HA) gene. Currently, H3N8 is the sole subtype circulating worldwide with Florida clade 1 (FC1) is most prevalent in the Americas and FC2 in Asia and Europe. In Egypt, EIV was detected in two occasions: subtype H7N7 in 1989 and subtype H3N8 (FC1) in 2008. No data is available on the circulation pattern of EIV during the last decade despite frequent observation of suspected cases. METHODS: Twenty-two nasal swabs were collected from vaccinated and non-vaccinated horses showing respiratory signs suggestive of EIV infection in 2017-18. Three additional swabs were retrieved during a national race event in January 2018 from Arabian mares with high fever, gait stiffness and dry cough. Samples were screened by RT-qPCR and HA1 domain of the hemagglutinin gene was amplified and sequenced for sequence and phylogenetic analysis. RESULTS: RT-qPCR screening revealed that only the 3 samples from the race were positive with cycle thresholds ranging from 16 to 21 indicating high viral load. Isolation attempts in hen's eggs were unsuccessful. Sequence analysis of the HA1 domain gene has revealed two identical nucleotide sequences, while the third contained 3 synonymous mutations. Phylogenetic analysis clustered study sequences with recent FC2 sequences from Europe. Amino acid alignments revealed 14 and 13 amino acid differences in the study sequences compared to A/equine/Egypt/6066NANRU-VSVRI/08 (H3N8) and A/equine/Kentucky/1997 (H3N8), respectively, available as EIV vaccines in Egypt. Nine amino acids were different from A/equine/Richmond/1/2007 (H3N8), the recommended FC2 vaccine strain by the world organization of animal health expert surveillance panel (OIE-ESP), two of which were unique to the Egyptian sequences while the remaining 7 changes were shared with the FC2-144V subgroup detected in the United Kingdom from late 2015 to 2016. CONCLUSIONS: The study represents the first reported detection of FC2-144V related EIV from Arabian mares in Egypt, and probably from the entire middle east region. The presented information about EIV epidemiology and spread may require reconsideration of the vaccine strains used in the national vaccination programs.


Asunto(s)
Enfermedades de los Caballos , Subtipo H3N8 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Caballos , Animales , Femenino , Subtipo H3N8 del Virus de la Influenza A/genética , Egipto/epidemiología , Filogenia , Pollos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/prevención & control , Hemaglutininas , Aminoácidos/genética
11.
Microbes Infect ; 24(8): 105013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35580801

RESUMEN

Wild birds are the natural reservoirs of avian influenza viruses, and surveillance and assessment of these viruses in wild birds provide valuable information for early warning and control of animal diseases. In this study, we isolated 19 H7N7 avian influenza viruses from wild bird between 2018 and 2020. Full genomic analysis revealed that these viruses bear a single basic amino acid in the cleavage site of their hemagglutinin gene, and formed four different genotypes by actively reassorting other avian influenza viruses circulating in wild birds and ducks. The H7N7 viruses bound to both avian-type and human-type receptors, although their affinity for human-type receptors was markedly lower than that for avian-type receptors. Moreover, we found that the H7N7 viruses could replicate efficiently in the upper respiratory tract and caecum of domestic ducks, and that the H5/H7 inactivated vaccine used in poultry in China provided complete protection against H7N7 wild bird virus challenge in ducks. Our findings demonstrate that wild bird H7N7 viruses pose a substantial threat to the poultry industry across the East Asian-Australian migratory flyway, emphasize the importance of influenza virus surveillance in both wild and domestic birds, and support the development of active control strategies against H7N7 virus.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Subtipo H7N7 del Virus de la Influenza A/genética , Australia , Gripe Aviar/epidemiología , Aves , Animales Salvajes , Virus de la Influenza A/genética , Patos , Aves de Corral , Filogenia
12.
J Virol ; 96(5): e0212021, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35044215

RESUMEN

Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals, including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAV that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that the A135E mutation is key for binding α2,3-linked NeuGc but does not abolish NeuAc binding. The additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This analysis revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after the introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. IMPORTANCE Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these "keys" (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority bind NeuGc. NeuGc is present in species like horses, pigs, and mice but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H7N7 del Virus de la Influenza A , Ácidos Neuramínicos , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Caballos , Humanos , Subtipo H7N7 del Virus de la Influenza A/química , Subtipo H7N7 del Virus de la Influenza A/metabolismo , Ácido N-Acetilneuramínico , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Filogenia , Polisacáridos/metabolismo , Unión Proteica
13.
Jpn J Infect Dis ; 75(4): 398-402, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34980710

RESUMEN

The circulation of avian influenza A viruses in poultry is a public health concern due to the potential transmissibility and severity of these viral infections. Monitoring the susceptibility of these viruses to antivirals is important for developing measures to strengthen the level of preparedness against influenza pandemics. However, drug susceptibility information on these viruses is limited. Here, we determined the susceptibilities of avian influenza A(H5N1), A(H5N2), A(H5N8), A(H7N7), A(H7N9), A(H9N1), and A(H9N2) viruses isolated in Japan to the antivirals approved for use there: an M2 inhibitor (amantadine), neuraminidase inhibitors (oseltamivir, peramivir, zanamivir, and laninamivir) and RNA polymerase inhibitors (baloxavir and favipiravir). Genotypic methods that detect amino acid substitutions associated with antiviral resistance and phenotypic methods that assess phenotypic viral susceptibility to drugs have revealed that these avian influenza A viruses are susceptible to neuraminidase and RNA polymerase inhibitors. These results suggest that neuraminidase and RNA polymerase inhibitors currently approved in Japan could be a treatment option against influenza A virus infections in humans.


Asunto(s)
Farmacorresistencia Viral , Gripe Aviar , Gripe Humana , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , ARN Polimerasas Dirigidas por ADN , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N7 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Humana/epidemiología , Gripe Humana/virología , Japón/epidemiología , Neuraminidasa/genética , Neuraminidasa/metabolismo , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Aves de Corral
14.
Artículo en Inglés | MEDLINE | ID: mdl-32152243

RESUMEN

Horses are the third major mammalian species, along with humans and swine, long known to be subject to acute upper respiratory disease from influenza A virus infection. The viruses responsible are subtype H7N7, which is believed extinct, and H3N8, which circulates worldwide. The equine influenza lineages are clearly divergent from avian influenza lineages of the same subtypes. Their genetic evolution and potential for interspecies transmission, as well as clinical features and epidemiology, are discussed. Equine influenza is spread internationally and vaccination is central to control efforts. The current mechanism of international surveillance and virus strain recommendations for vaccines is described.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Caballos , Humanos , Subtipo H3N8 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Porcinos
15.
J Virol ; 96(3): e0171721, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787451

RESUMEN

A 2-year surveillance study of influenza A viruses in migratory birds was conducted to understand the subsequent risk during the migratory seasons in Dandong Yalu River Estuary Coastal Wetland National Nature Reserve, Liaoning Province, China, a major stopover site on the East Asian-Australasian flyway. Overall, we isolated 27 influenza A viruses with multiple subtypes, including H3N8 (n = 2), H4N6 (n = 2), H4N7 (n = 2), H7N4 (n = 9), H7N7 (n = 1), H10N7 (n = 7), and H13N6 (n = 4). Particularly, a novel reassortant influenza A(H7N4) virus was first identified in a woman and her backyard poultry flock in Jiangsu Province, China, posing a serious threat to public health. Here, we describe the genetic characterization and pathogenicity of the nine influenza A(H7N4) isolates. Phylogenetic analysis indicated that complex viral gene flow occurred among Asian countries. We also demonstrated a similar evolutionary trajectory of the surface genes of the A(H7N4) isolates and Jiangsu human-related A(H7N4) viruses. Our A(H7N4) isolates exhibited differing degrees of virulence in mice, suggesting a potential risk to other mammalian species, including humans. We revealed multiple mutations that might affect viral virulence in mice. Our report highlights the importance and need for the long-term surveillance of avian influenza virus in migratory birds combined with domestic poultry surveillance along migratory routes and flyways and, thereby, the development of measures to manage potential health threats. IMPORTANCE The H7 subtype avian influenza viruses, such as H7N2, H7N3, H7N4, H7N7, and H7N9, were documented as being capable of infecting humans, and the H7 subtype low pathogenicity avian influenza viruses are capable of mutating into highly pathogenic avian influenza; therefore, they pose a serious threat to public health. Here, we investigated the evolutionary history, molecular characteristics, and pathogenicity of shorebird-origin influenza A(H7N4) viruses, showing a similar evolutionary trajectory with Jiangsu human A(H7N4) viruses in HA and NA genes. Moreover, our isolates exhibited variable virulence (including moderate virulence) in mice, suggesting a potential risk to other mammalian species, including humans.


Asunto(s)
Enfermedades Transmisibles Emergentes/veterinaria , Subtipo H7N7 del Virus de la Influenza A/clasificación , Subtipo H7N7 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Evolución Biológica , Aves , China/epidemiología , Secuencia Conservada , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Evolución Molecular , Femenino , Ratones , Mutación , Filogenia , Filogeografía , Posición Específica de Matrices de Puntuación , ARN Viral , Virulencia
16.
Viruses ; 13(11)2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835129

RESUMEN

Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A/inmunología , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , Gripe Aviar/inmunología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología
17.
Viruses ; 13(10)2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34696486

RESUMEN

H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Animales , Animales Salvajes/virología , Aves/genética , Aves/virología , Heces/virología , Femenino , Subtipo H7N7 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos BALB C , Filogenia , República de Corea/epidemiología , Virulencia
18.
mBio ; 12(5): e0219621, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34488451

RESUMEN

Host shutoff in influenza A virus (IAV) infection is a key process contributing to viral takeover of the cellular machinery and resulting in the downregulation of host gene expression. Analysis of nascently transcribed RNA in a cellular model that allows the functional induction of NS1 demonstrates that NS1 suppresses host transcription. NS1 inhibits the expression of genes driven by RNA polymerase II as well as RNA polymerase I-driven promoters, but not by the noneukaryotic T7 polymerase. Additionally, transcriptional termination is deregulated in cells infected with wild-type IAV. The NS1 effector domain alone is able to mediate both effects, whereas NS1 mutant GLEWN184-188RFKRY (184-188) is not. Overexpression of CPSF30 counteracts NS1-mediated inhibition of RNA polymerase II-driven reporter gene expression, but knockdown of CPSF30 expression does not attenuate gene expression. Although NS1 is associated with nuclear chromatin, superresolution microscopy demonstrates that NS1 does not colocalize with genomic DNA. Moreover, NS1 mutants and NS1 fusion proteins, unable to associate with nuclear chromatin and displaying an altered subcellular distribution are still able to attenuate reporter gene expression. However, tethering NS1 artificially to the cytoskeleton results in the loss of reporter gene inhibition. A NS1 deficient in both native nuclear localization signals (NLS) is able to inhibit gene expression as effective as wild-type NS1 when a synthetic NLS relocates it to specific structures of the nucleus. Colocalization experiments and reporter gene cotransfection experiments with a NS1 fusion guiding it to nuclear speckles suggest that the presence of NS1 in nuclear speckles seems to be essential for host shutoff. IMPORTANCE We investigated the role of IAV nonstructural protein 1 NS1 in host gene shutoff-a central feature of IAV replication. We demonstrate that the effector domain of NS1 alone mediates host gene shutoff by inhibition of host transcription and by deregulation of the polyadenylation (polyA) signal-mediated 3' termination of host transcription. NS1 mutated in amino acids 184 to 188 fails to shut off host gene expression. Knockdown of CPSF30 does not result in transcriptional attenuation. By analyzing the subcellular localization of modified NS1 proteins and relating these data to their ability to inhibit reporter gene expression, we show for the first time that the presence of NS1 in granular structures of the nucleus-representing most likely nuclear speckles-seems to be essential to mediate host gene shutoff. Thus, our data present so far unknown insights into the molecular and spatial requirements needed for IAV-NS1-mediated host shutoff.


Asunto(s)
Núcleo Celular/virología , Subtipo H7N7 del Virus de la Influenza A/metabolismo , Gripe Humana/genética , Gripe Humana/virología , Transcripción Genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Interacciones Huésped-Patógeno , Humanos , Subtipo H7N7 del Virus de la Influenza A/genética , Gripe Humana/metabolismo , Dominios Proteicos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas no Estructurales Virales/genética
19.
Viruses ; 13(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34452521

RESUMEN

Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.


Asunto(s)
Enfermedades de los Caballos/prevención & control , Subtipo H3N8 del Virus de la Influenza A/inmunología , Subtipo H7N7 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Anticuerpos Antivirales/inmunología , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Subtipo H3N8 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/fisiología , Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología
20.
Viruses ; 13(5)2021 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065126

RESUMEN

The main findings of the post-mortem examination of poultry infected with highly pathogenic avian influenza viruses (HPAIV) include necrotizing inflammation and viral antigen in multiple organs. The lesion profile displays marked variability, depending on viral subtype, strain, and host species. Therefore, in this study, a semiquantitative scoring system was developed to compare histopathological findings across a wide range of study conditions. Briefly, the severity of necrotizing lesions in brain, heart, lung, liver, kidney, pancreas, and/or lymphocytic depletion in the spleen is scored on an ordinal four-step scale (0 = unchanged, 1 = mild, 2 = moderate, 3 = severe), and the distribution of the viral antigen in parenchymal and endothelial cells is evaluated on a four-step scale (0 = none, 1 = focal, 2 = multifocal, 3 = diffuse). These scores are used for a meta-analysis of experimental infections with H7N7 and H5N8 (clade 2.3.4.4b) HPAIV in chickens, turkeys, and ducks. The meta-analysis highlights the rather unique endotheliotropism of these HPAIV in chickens and a more severe necrotizing encephalitis in H7N7-HPAIV-infected turkeys. In conclusion, the proposed scoring system can be used to condensate HPAIV-typical pathohistological findings into semiquantitative data, thus enabling systematic phenotyping of virus strains and their tissue tropism.


Asunto(s)
Virus de la Influenza A/fisiología , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/virología , Tropismo Viral , Animales , Antígenos Virales , Biopsia , Pollos , Patos , Inmunohistoquímica , Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A/clasificación , Especificidad de Órganos , Índice de Severidad de la Enfermedad , Pavos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...